ENTER


Полный размерЗакрыть
Details

Bezditko P. A.

Kharkiv National Medical University, Kharkiv, Ukraine 

 Summary. Ocular hypertension is one of the physiological conditions of the eye, accompanied by an increase in intraocular pressure without changes in the optic nerve and visual function by the glaucoma type. Clarification of this diagnosis requires a thorough examination in order to exclude evidence of both primary and secondary glaucoma. Based on the results of Ocular Hypertension Treatment Study the criteria of risk of transition of ocular hypertension into primary open-angle glaucoma were described. Three risk stages (low, moderate and high) of transition of ocular hypertension into glaucoma are established. On the basis of these risk stages, an algorithm for monitoring the treatment of patients with ocular hypertension was developed. For the calculation of these risks the special STAR calculator is provided, it is available in hard copy, electronic format and online. A range of topical drugs to reduce intraocular pressure are described and indications for their use are justified.

 Keywords: essential ocular hypertension, primary and secondary glaucoma, Ocular Hypertension Treatment Study, OHTS, transition ocular risks of glaucoma, STAR calculator, an algorithm of management of patients with ocular hypertension. 


REFERENCES

  1. Chang-Godinich A. Ocular Hypertension. Medscape Drugs & Diseases. Available at: http://emedicine.medscape.com/article/1207470-overview.
  2. Armaly M., Sayegh R. The cup/disc ratio. Archives of Ophthalmology. 1969; (82): 191–196.
  3. Baudouin C., Renard J. P., Nordmann J. P., Denis P., Lachkar Y., Sellem E., Rouland J. F., Jeanbat V., Bouée S. Prevalence and risk factors for ocular surface disease among patients treated over the long term for glaucoma or ocular hypertension. European Journal of Ophthalmology. 2013; (23): 47–54.
  4. Bengtsson B., Heijl A. Normal intersubject threshold variability and normal limits of the SITA SWAP and full threshold SWAP perimetric programs. Investigative Ophthalmology & Visual Science. 2003: (44): 5029–5034.
  5. Bezditko P. A., Bezditko N. V. Advantages of fixed combination therapy of glaucoma. Ophtalmologia. Vostochnaya Evropa [Ophthalmology. Eastern Europe]. 2013; (3): 129–135 (in Russian).
  6. Bezditko P. A. Neuroprotective treatment of glaucoma. Zdorovie Ukraini [Health of Ukraine]. 2014; (342): 26–27 (in Russian).
  7. Brandt J. D., Beiser J. A., Gordon M. O., Kass M. A. Central corneal thickness and measured IOP response to topical ocular hypotensive medication in the Ocular Hypertension Treatment Study. American Journal of Ophthalmology. 2004; 138 (5): 717–722.
  8. Brandt J. D., Beiser J. A., Kass M. A., Gordon M. O. Central corneal thickness in the Ocular Hypertension Treatment Study (OHTS). Ophthalmology. 2001; 108 (10): 1779–1788.
  9. Brubaker R. F. Introduction: Three Targets for Glaucoma Management. Surveys of Ophthalmology. 2003; 48 (2): 1–2.
  10. Coops A., Henson D. B., Kwartz A. J., Artes P. H. Automated analysis of heidelberg retina tomograph optic disc images by glaucoma probability score. Investigative Ophthalmology & Visual Science. 2006; 47 (12): 5348–5355.
  11. Danesh-Meyer H. V., Gaskin B. J., Jayusundera T., Donaldson M., Gamble G. D. Comparison of disc damage likelihood scale, cup to disc ratio, and Heidelberg retina tomograph in the diagnosis of glaucoma. British Journal of Ophthalmology. 2006; 90 (4): 437–441.
  12. Danesh-Meyer H. V., Ku J. Y. F., Papchenko T. L., Jayasundera T., Hsiang J. C., Gamble G. D. Regional correlation of structure and function in glaucoma, using the Disc Damage Likelihood Scale, Heidelberg Retina Tomograph, and visual fields. Ophthalmology. 2006; 113: 603–611.
  13. Greenfeld D. S., Liebmann J. M., Ritch R., Krupin T. Visual field and intraocular pressure asymmetry in the low-pressure glaucoma treatment study. Ophthalmology. 2007; 114 (3): 460–465.
  14. Doughty M. J., Zaman M. L. Human corneal thickness and its impact on intraocular pressure measures: a review and meta-analysis approach. Survey of Ophthalmology. 2000; 44 (5): 367–408.
  15. Drance S. M. Studies in the susceptibility of the eye to raised intraocular pressures. Archives of Ophthalmology. 1962; (68): 478–485.
  16. Miglior S., Pfeiffer N., Torri V., Zeyen T., Cunha-Vaz J., Adamsons I. Predictive factors for open-angle glaucoma among patients with ocular hypertension in the European Glaucoma Prevention Study. Ophthalmology. 2007; (114): 3–9.
  17. Goldman H., Schmidt T. Applanation tonometry. Ophthalmologica. 1957; 134 (4): 221–242.
  18. Strouthidis N. G., Vinciotti V., Tucker A. J., Gardiner S. K., Crabb D. P. Structure and function in glaucoma: The relationship between a functional visual field map and an anatomic retinal map. Investigative Ophthalmology & Visual Science. 2006; 47 (12): 5356–5362.
  19. Gordon M. O., Beiser J. A., Brandt J. D., Heuer D. K., Higginbotham E. J., Johnson C. A., Keltner J. L., Miller J. P., Parrish R. K. 2nd, Wilson M. R., Kass M. A. The Ocular Hypertension Treatment Study: baseline factors that predict the onset of primary open-angle glaucoma. Archives of Ophthalmology. 2002; 120 (6): 714–720.
  20. Gordon M. O., Kass M. A. The Ocular Hypertension Treatment Study: design and baseline description of the participants. Archives of Ophthalmology. 1999; 5 (117): 573–583.
  21. Harwerth R. S., Carter-Dawson L., Smith E. L. 3rd, Barnes G., Holt W. F., Crawford M. L. Neural losses correlated with visual losses in clinical perimetry. Investigative Ophthalmology & Visual Science. 2004; 45(9): 3152–3160.
  22. Henderer J. D., Liu C., Kesen M., Altangerel U., Bayer A., Steinmann W. C., Spaeth G. L. Reliability of the disk damage likelihood scale. American Journal of Ophthalmology. 2003; (135): 44–48.
  23. Higginbotham E. J., Gordon M. O., Beiser J. A., Drake M. V., Bennett G. R., Wilson M. R., Kass M. A. The Ocular Hypertension Treatment Study: topical medication delays or prevents primary open-angle glaucoma in African American individuals. Archives of Ophthalmology. 2004; (122): 813–820.
  24. Januschowski K., Blumenstock G., Rayford II C. E., Bartz-Schmidt K. U., Schiefer U., Ziemssen F. Stereometrische Parameter der Papillentopographie: Vergleich einer simultan-stereoskopischen Non-Mydriasis-Funduskamera (KOWA WX 3D) mit dem Heidelberg Retina Tomograph (HRT III). Ophthalmologe. 2011; 108 (10): 957–962.
  25. Johnson C. A., Adams A. J., Casson E. J., Brandt J. D. Blue-on-yellow perimetry can predict the development of glaucomatous visual field loss. Archives of Ophthalmology. 1993; 111 (5): 645–650.
  26. Jonas J. B., Budde W. M., Panda-Jonas S. Ophthalmoscopic evaluation of the optic nerve head. Survey of Ophthalmology. 1999; (43): 293–320.
  27. Kannel W. B., Neaton J. D., Wentworth D., Thomas H. E., Stamler J., Hulley S. B., Kjelsberg M. O. Overall and coronary heart disease mortality rates in relation to major risk factors in 325,348 men screened for the MRFIT. American Heart Journal. 1986; (112): 825–836.
  28. Kannel W. B. Risk stratification in hypertension: New insights from the Framingham study. American Journal of Hypertension. 2000; (13): 3–10.
  29. Kass M. A., Heuer D. K., Higginbotham E. J., Johnson C. A., Keltner J. L., Miller J. P., Parrish R. K. 2nd, Wilson M. R., Gordon M. O. The Ocular Hypertension Treatment Study: a randomized trial determines that topical ocular hypotensive medication delays or prevents the onset of primary open-angle glaucoma. Archives of Ophthalmology. 2002; 120 (6): 701–713.
  30. Kerrigan-Baumrind L. A., Quigley H. A., Pease M. E., Kerrigan D. F., Mitchell R. S. Number of ganglion cells in glaucoma eyes compared with threshold visual field tests in the same persons. Investigative Ophthalmology & Visual Science. 2000; 41 (3): 741–748.
  31. Kudo H., Nakazawa T. Neuroprotective effect of latanoprost on rat retinal ganglion cells. Graefe’s Archive for Clinical and Experimental Ophthalmology. 2007; (3): 15–19.
  32. Kymes S. M., Kass M. A., Anderson D. R., Miller J. P., Gordon M. O. Management of ocular hypertension: a cost-effectiveness approach from the Ocular Hypertension Treatment Study. American Journal of Ophthalmology. 2006; 141 (6): 997–1008.
  33. Medeiros F. A., Weinreb R. N., Sample P. A., Gomi C. F., Bowd C., Crowston J. G., Zangwill L. M. Validation of a predictive model to estimate the risk of conversion from ocular hypertension to glaucoma. Archives of Ophthalmology. 2005; (123): 1351–1360.
  34. Percines E. S. Glaucoma screening from a public health clinic. British Medical Journal. 1965; 1 (5432): 417–419.
  35. Rao H. L., Yadav R. K., Addepalli U. K., Chaudhary S., Senthil S., Choudhari N. S., Garudadri C. S. Peripapillary retinal nerve fiber layer assessment of spectral domain optical coherence tomography and scanning laser polarimetry to diagnose preperimetric glaucoma. PLoS One. 2014; 9(10): e108992.
  36. Reus N. J., Colen T. P., Lemij H. G. The prevalence of glaucomatous defects with short-wavelength automated perimetry in patients with elevated intraocular pressures. Journal of Glaucoma. 2005; 14 (1): 26–29.
  37. Rivera J. L., Bell N. P., Feldman R. M. Risk factors for primary open angle glaucoma progression: what we know and what we need to know. Current Opinion in Ophthalmology. 2008; 19 (2): 102–106.
  38. Schmidt K. G., Von Ruckmann A., Becker R., Pillunat L. E. Ocular pulse amplitude, intraocular pressure and beta-blocker/carbonic anhydrase inhibition in combined therapy of primary open-angle glaucoma. Klinische Monatsblätter für Augenheilkunde. 1999; 215 (6): 361–366.
  39. Seymenoğlu G., Başer E., Oztürk B. Comparison of spectral-domain optical coherence tomography and Heidelberg retina tomograph III optic nerve head parameters in glaucoma. Ophthalmologica. 2013; 229 (2): 101–105.
  40. Shields M. B. Textbook of Glaucoma. 3rd ed. Baltimore, Lippincott Williams & Wilkins, 1992, 656 p.
  41. Spaeth G. L., Henderer J., Liu C., Kesen M., Altangerel U., Bayer A., Katz L. J., Myers J., Rhee D., Steinmann W. The disc damage likelihood scale: Reproducibility of a new method of estimating the amount of optic nerve damage caused by glaucoma. Transactions of the American Ophthalmological Society. 2002; (100): 181–185.
  42. Spaeth G. L. Early primary open-angle glaucoma: diagnosis and management. Preface. International Ophthalmology Clinics. 1979; 19 (1): 7–9.
  43. Strouthidis N. G., Vinciotti V., Tucker A. J., Gardiner S. K., Crabb D. P. Structure and function in glaucoma: The relationship between a functional visual field map and an anatomic retinal map. Investigative Ophthalmology & Visual Science. 2006; 47 (12): 5356–5362.
  44. Tsai C., Zangwill L., Gonzalez C., Irak I., Garden V., Hoffman R., Weinreb R. N. Ethnic differences in optic nerve head topography. Journal of Glaucoma. 1995; (4): 248–257.
  45. Veselovska Z. F., Veselovska N. M. Primary neuroprotection in glaucoma. Klinicheskaya Ophthalmologia [Clinical ophthalmology]. 2011; (4): 131–133 (in Russian).
  46. Weinreb R. N., Friedman D. S., Fechtner R. D., Cioff G. A., Coleman A. L., Girkin C. A., Liebmann J. M., Singh K., Wilson M. R., Wilson R., Kannel W. B. Risk assessment in the management of patients with ocular hypertension. American Journal of Ophthalmology. 2004; (138): 458–467.
  47. Weinreb R., Medeiros F. Estimating the Risk of Developing Glaucoma. Open Ophthalmology Journal. 2009; (3): 50–53.
  48. Weinreb R. N. Introduction to the supplement. Ocular hypertension: defining risks and clinical options. American Journal of Ophthalmology. 2004; 138: 1–2.
  49. Wheeler L., WoldeMussie E., Lai R. Role of Alpha-2 Agonists in Neuroprotection. Surveys of Ophthalmology. 2003; 48 (2): 19–23.

Received: 17 Feb. 2016

Published: July 2016